Hyperbolic Geometry of Complex Networks

نویسندگان

  • Dmitri V. Krioukov
  • Fragkiskos Papadopoulos
  • Maksim Kitsak
  • Amin Vahdat
  • Marián Boguñá
چکیده

We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

On Hyperbolic Geometry Structure of Complex Networks

Various real world phenomena can be modeled by a notion called complex network. Much effort has been devoted into understanding and manipulating this notion. Recent research hints that complex networks have an underlying hyperbolic geometry that gives them navigability, a highly desirable property observed in many complex networks. In this internship, a parameter called δ-hyperbolicity, which i...

متن کامل

Emergent Hyperbolic Network Geometry

A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a ...

متن کامل

Clustering and the Hyperbolic Geometry of Complex Networks

Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks or social networks. In this paper, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010